A Two-Scale Approach for the Analysis of Propagating Three-Dimensional Fractures
نویسندگان
چکیده
This paper presents a generalized finite element method (GFEM) for crack growth simulations based on a two-scale decomposition of the solution – a smooth coarse-scale component and a singular fine-scale component. The smooth component is approximated by discretizations defined on coarse finite element meshes. The fine-scale component is approximated by the solution of local problems defined in neighborhoods of cracks. Boundary conditions for the local problems are provided by the available solution at a crack growth step. The methodology enables accurate modeling of 3-D propagating cracks on meshes with elements that are orders of magnitude larger than those required by the FEM. The coarse-scale mesh remains unchanged during the simulation. This, combined with the hierarchical nature of GFEM shape functions, allows the recycling of the factorization of the global stiffness matrix during a crack growth simulation. Numerical examples demonstrating the approximating properties of the proposed enrichment functions and the computational performance of the methodology are presented.
منابع مشابه
Three-dimensional elasticity solution for vibrational analysis of thick continuously graded sandwich plates with different boundary conditions using a two-parameter micromechanical model for agglomeration
An equivalent continuum model based on the Eshelby-Mori-Tanaka approach was employed to estimate the effective constitutive law for an elastic isotropic medium (i.e., the matrix) with oriented straight carbon nanotubes (CNTs). The two-dimensional generalized differential quadrature method was an efficient and accurate numerical tool for discretizing equations of motion and for implementing vari...
متن کاملThe Nonlinear Bending Analysis for Circular Nano Plates Based on Modified Coupled Stress and Three- Dimensional Elasticity Theories
In this paper, the nonlinear bending analysis for annular circular nano plates is conducted based on the modified coupled stress and three-dimensional elasticity theories. For this purpose, the equilibrium equations, considering nonlinear strain terms, are calculated using the least energy potential method and solved by the numerical semi-analytical polynomial method. According to the previous ...
متن کاملEvaluation of Updating Methods in Building Blocks Dataset
With the increasing use of spatial data in daily life, the production of this data from diverse information sources with different precision and scales has grown widely. Generating new data requires a great deal of time and money. Therefore, one solution is to reduce costs is to update the old data at different scales using new data (produced on a similar scale). One approach to updating data i...
متن کاملA simple form of MT impedance tensor analysis to simplify its decomposition to remove the effects of near surface small-scale 3-D conductivity structures
Magnetotelluric (MT) is a natural electromagnetic (EM) technique which is used for geothermal, petroleum, geotechnical, groundwater and mineral exploration. MT is also routinely used for mapping of deep subsurface structures. In this method, the measured regional complex impedance tensor (Z) is substantially distorted by any topographical feature or small-scale near-surface, three-dimensional (...
متن کاملA new conforming mesh generator for three-dimensional discrete fracture networks
Nowadays, numerical modelings play a key role in analyzing hydraulic problems in fractured rock media. The discrete fracture network model is one of the most used numerical models to simulate the geometrical structure of a rock-mass. In such media, discontinuities are considered as discrete paths for fluid flow through the rock-mass while its matrix is assumed impermeable. There are two main pa...
متن کامل